Building the green manufacturing pipeline
It has been a busy month of December so I am a bit behind in this posting. The good news is some of my activities helped me to frame this and the next few discussions!
In a post on October 14, 2009 I discussed the concept of "ubiquitously green" as we were getting into the green manufacturing subject in greater detail. I cited Miriam Webster (aka "the dictionary") for a definition of ubiquitous as "existing or being everywhere at the same time; constantly encountered; widespread" and they give the example "a ubiquitous fashion." The adverb ubiquitously means, essentially, in a ubiquitous manner. Another term that could be used here is holistic - meaning incorporating all aspects.
The topic then was expanded to a discussion of the terms "design for manufacturing" (or DfM) and "manufacturing for design" (MfD). These terms are commonly used in the semiconductor industry where manufacturing restrictions often limit the capability of designers in chip design. The concept is that, from the perspective of the designer, she should be able to look down the product development and manufacturing pipeline and anticipate problems and challenges to manufacture the design or some particular feature. It's the reverse for the MfD side. The manufacturing engineer should be able to look up the pipeline and see design features and elements that are going to cause challenges. Or, ideally, see the requirements of design in advance so that the capable manufacturing processes or systems can be in place when the design rattles down the pipe to production.
This view works well with a temporal representation of the design to manufacturing to distribution to use and end of life treatment scenario. And, hence, the requirement is that throughout all the stages from extraction of materials through the process of their conversion, to manufacture and assembly of the product, its distribution and delivery, use and eventual reuse, remanufacture or recycling, the principles of green and sustainable manufacturing should be "everywhere at the same time; constantly encountered."
I like this view. It creates a clear mental image of the various actors, almost in relay race style, handing off their piece of the process to the next person in the pipeline with the coordination and competence typical of a relay team competing in a race.
Tools to help with the design to production pipeline. I've used the image shown below to delineate the critical elements in the pipeline from a production process development and implementation view (remember I am a manufacturing engineer and the blog is titled "green manufacturing"!).
This view starts with a functional model of a process for creating the features of the part or workpiece and then continues through the prototype building (or at least solid conceptualization from the process model output) through integration with the computer aided design (or CAD) capability to insure that process scale-up can be achieved and then the details of production line layout (design and optimization), supply chains with the requisite quality gates and, finally, but not necessarily lastly, the integration of the environmental impacts, social effects, energy, material utilization, etc. for green manufacturing.
What makes this so "connected" so that the person on the process model end of the pipe (and with the specification of the part from the design team in hand) can see down the entire length of the pipeline and envision the opportunities and problems to be taken or avoided (respectively) while doing his or her part?
Simple answer - data. Data on the design; data on the materials available and their usage; data on the impacts of the process steps; data on efficiency of the factory layout; data on the distribution network and supply chain; data on the consumer usage and re-use potential; data on the recovery of materials from the product at end of life; and so on and so on.
The tools we are referring to should allow this "temporal" representation, or time dependent sequence of stages, to be compressed into the frame of view of whomever is working along the pipeline. That is, we should need no longer wait for action and reaction, then assessment and correction and repeat the process.
That's the kind of tools I am referring to. Pipeline at the speed of light - or data transfer and representation in real time.
Then we need to step back from manufacturing. What comes before? Should this be linked in to the pipeline? Meaning, should we "add some pipe" to the front of the manufacturing image illustrated above?
You bet we should!
Here is a representation of the "design to manufacturing" steps I've used before. It starts a long time before a designer starts inputting data to the CAD system. In an idealized process, we speak to the
customers to understand what they want, need. We write design specifications. We do a conceptual and then detailed design. We then hand this off to manufacturing. Actually, today, there is a lot more feedback between all these steps and, again, not as sequential as we might think.
But, the important idea is that this product creation "pipeline" is on the front of the manufacturing pipeline shown earlier.
Same story. Same need for data instantaneously available at all stages of the pipe. Same ability to see what the effect of one's impact is "downstream" in the pipeline. But, it is not a real impact if we do this right - only a potential impact. An impact we can amplify or attenuate depending on what we are trying to achieve.
Next time we'll look at some of the tools already available to enable big chunks of this pipeline and the kind and sources of data to drive this.